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Some of the series resulting from quantum field theory are known to be summable 
by Pad& approximants. As a test of the feasibility of generating such series by numerically 
calculating the Feyrnnan graphs in each order, we have calculated sixth order graphs 
for nucleon-nucleon scattering with pseudoscalar pion exchange. Graphs with a Xv4 
interaction of the pions are also calculated. We find that a modification of the Monte 
Carlo technique is essential to obtain accuracy, and that certain variable transformations 
are necessary to eliminate integrable boundary singularities which remain after re- 
normalization. A brief discussion of the physical significance of the magnitude of the 
sixth-order terms is included. 

I. INTRODUCTION 

Pad& approximants have been useful in summing the series arising in statistical 
physics [l] and in obtaining useful information concerning, for example, the nature 
of the singularity at the Curie temperature predicted by the Ising and Heisenberg 
models. It is not definitely known that the series resulting from quantum field 
theory are similarly summable, although much progress has been made in closely 
analogous problems [3] or even problems of more obvious relevance [4]. 

What one would like to do is calculate the perturbation series for (say) nucleon- 
nucleon scattering to high order and form the Padt approximants to test whether 
or not they converge. In statistical physics, such a test was possible a long time 
ago because the formidable task of calculating the series was completed before 
the use of the Pade approximant was common in physics [l]. In quantum field 
theory, some calculations of pion-pion scattering have proceeded through a 
sticiently high order so that at least the first two PadC approximants in what 
should be an infinite sequence can be formed [5]. For nucleon-nucleon scattering, 
only the first has been calculated [6], but due to anomalous threshold dependences 
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of some of the amplitudes, not much could be expected of the first Pad6 approxi- 
mant anyhow. 

We are led, therefore, to study the feasibility of higher order calculations in the 
nucleon-nucleon problem. Since it has been found that a hv* interaction can 
reproduce the p-resonance [7], this interaction will be included with the usual 
Fy5Yp) interaction. The p is commonly used in one boson exchange models. 
The graphs arising from the XT* interaction which are made finite by renormaliza- 
tion have integrable singularities (remnants of their divergent character before 
renormalization) on the boundaries of the region over which the Feynman variables 
are integrated. One purpose of the work is to study how these integrable singu- 
larities are best handled. 

The magnitudes of the sixth-order terms are of some interest for more con- 
ventional views of the utility of quantum field theory (the view that the series 
must converge to be useful). This view is that the series might be useful for higher 
angular momenta, or might be useful if various partial summations or certain 
types of graphs were effected somehow. We comment briefly on the results from 
this more conventional point of view in Section V, but we wish to emphasize 
that our own is quite different and that our purpose in the present work is to 
establish techniques and feasibility rather than to obtain specific results. 

It is to be hoped that someday it will be possible to do the tedious Dirac algebra 
and the other algebra involved in these calculations on computing machines [8]. 
Our results should provide useful checks of automated calculations, and we expect 
that such checks are the most valuable aspect of the present work. 

II. METHODS 

A. Preliminary considerations 

The interaction for this calculation is taken as 

XI = i(4.rr)1/2 gFy,# - cp + 4~A(cp * cp)“, (1) 

where the Dirac equation is (ir . p + m) u(p) = 0. The conventions used are 
fi = c = 1, g2 N 14, UU = 1, yUyy + yyyU = 2S,, , and ys2 = 1. The resulting set 
of graphs to be considered is shown in Fig. 1. Graphs which require the usual 
vertex and self-energy renormalization have been ignored on the strength of a 
fourth-order calculation which indicates that they are small [13]. 

The graphs have such diverse characteristics that it is found that a variety of 
methods is required to evaluate them. However, with the exception of the ladder 
graph (Fig. l(e)), the basic method is the same. We express the amplitudes first 
in the usual form as integrals over the internal momenta and then convert these 



570 GAMMEL AND WORTMAN 

to multiple integrals over Feynman parameters using Chisholm’s methods [14]. 
These methods provide the usual means of combining denominators and trading 
the momenta integrals for integrals over Feynman parameters while dealing 
with the spin complications in a straightforward way. 
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FIG. 1. Perturbation theory graphs which will be considered. 

The chief difficulties resulting from this procedure are the need for reducing 
the resulting spinors to combinations of the standard five NN amplitudes and the 
necessity of carrying out resulting multiple integrals, some of which contain 
singular integrands. The second difficulty is the more serious. 

B. Chisholm method 

The Chisholm method [14] is carried out by writing the nucleon propagators as 

’ iy * (p + k) - m ’ 
[ 

iy a m s 1 da 
1 

(p + kj2 + m2 -“-z’ap m1 (P + w2 + 0 

Here u is to be set to the proper m2 after the operation denoted by F is performed. 
Thus the amplitude becomes that of the corresponding scalar case except for the 
operations F that remain to be carried out. 

The propagators for the internal lines can be combined in the usual way by 
noting that 

[w, *** ~n+,l-1 

= n! 1: dxl 1:’ dx, *.* 1y-l dx, 

x [a,(1 - XJ + a&q - x2) + **- + a&,-, - x,) + an+l&l-(n+l). (3) 

Therefore the integrals are reduced to the form 

f f 
dxi d4k, ... d4kl[Q(kl ,..., k, , xi)]-‘, (4) 
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where I is the number of internal momenta and r is the number of internal lines 
in the graph. The quantity Q is at most quadratic in the momenta and can be 
written [omitting dots which indicate scalar products in Eqs. (5)-(9)] 

Q = ZAifkikj + 2Z Biki + C. (5) 

By an appropriate orthogonal transformation and translation in k, .-a kl space, 
Q can be transformed to 

Q’ = ZAi’k;2 + c’. 

The momenta integrals can be explicitly evaluated, giving 

s d*k[Q& *.. k, > d-’ = (i+’ 
(r - 21 - 1) ! /P--21-2 

(,. _ I>! x7-21 * 

Here L’I and x are the determinants 

and 

A,, 42 . * * AI, 4 
x= i i 

. . . . 
Al, A,, . . . A-,, Ii, * 
Bl B, . . . B, C 

(6) 

(8) 

(9) 

Now A is independent of the external momenta p so that the F operators will 
affect only x. Chisholm [14] has investigated the result of a series of F’s operating 
on X+ and the result is conveniently expressed in terms of quantities Sz, and sZij . 
If one assigns a momentum Pi + Ki to the i-th internal line, then Pi will be some 
linear combination of the external momenta, perhaps zero, and Ki will be some 
linear combination of the internal momenta kj . If Pi for some nucleon line is 
zero, then a fictitious Pi is assigned to be set to zero after the F operations are 
performed. The coefficient of (Pi + Ki)2 + ci in Q will be denoted by Ci . Finally 
defining aij as the coefficient of ki in Ki , which may be f 1, or 0, sZij is 

I aj, aj2 . - . ai, sijlcf 
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sZi + m = 2A C sZ&$y + Pi. 
i 

(11) 

Prior to carrying out the F operations, the numerator will be some combination 
of F’s and y matrices such as 

~,Y,F,Y,F,Y,~~~,Y,Y~F~Y~~~[x-‘I. (W 

The result of the Fi operations is a “basic term” 

u,Y,s2,Y,~;2,Y,uliizY,S2,y,S2,y,uz[X-Tl) (13) 

plus terms found by substituting y,, for all possible pairs of 52, while noting the 
effect of the derivative in F. This gives, for example, 

ulY,Y,Y,Y,Y,ulu,Y,~n,y,S,y,u,SZ1,CX-’r-l)/(~ - 111. (14) 

There will be six such terms. Additional terms are found by substituting two pairs 
of yU’s for the sZi which gives, for example, 

ulY,Y,Y,Y,Y,ulu2Y,Y”Y~Y”Y~~2~12~2~[X-’~-2)l(r - w - 111. (15) 

There will be three such terms. 
By this procedure one obtains a numerator which is a sum of terms which are 

combinations of spinors, y-matrices, and Feynman parameters. This must be 
written as combinations of the five NIV scattering amplitudes as 

F = A,[ti,u,u,u,] 

+ A2FlW2iy * plu2 + Qiy * p2W22421 

+ M&iy * p2W2iy * w21 

+ -4,[~,Y,w2Y,~21 

+ 4b%Y&~2Y,~21. (16) 

The external momenta are labeled as shown in Fig. 2 and the spinors have the 
arguments &h’), ulW, &2(~2’), and Us. 

FIG. 2. Definition of external momenta. 
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In general, other combinations of spinors will occur but they can always be 
reduced to the form of (16) plus other terms whose coefficients will vanish due 
to time-reversal invariance (TRI). This last condition serves as a useful check 
on the calculation. 

C. Example calculation 

As an example of this procedure consider the graph of Fig. 3. The choice of 
momenta k, and kz is somewhat arbitrary and the associated combinations of the 
external momenta Pi are given in Table I. In terms of the contribution to the 
S-matrix, the invariant amplitude F is 

S = 1 + i(2?r)4 6(Zp, - L’pf) N,N,N,N,F, (17) 
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FIG. 3. A sixth-order graph. 

TABLE I 

Parameters associated with the graph in the example calculation 

i 1 2 3 4 5 6 

G 1 - 2-1 xg x2 - x3 x5 - x5 Xl - x2 x4 - X6 
ai1 0 1 -1 -1 0 -1 

ai2 1 0 1 0 -1 0 
P' 0 0 Pa I 

Pl fP2 PI 
I 

Pl 

where Ni = ((l/(27)9 mi/Ei)1/2. Therefore for the graph of Fig. 3, 

F = (g2)3 (4~~)~~ 1 d4kld4k,tcly,[iy * k, - m] 

x y5[iy . k - ml y5uIW22 + m21k2 + m”l>-l (18) 

x %Y&’ * (P2’ + k2 - W - ml I’&?’ . (PI + P2 - k,) - ml 3/+2 

[ 
(pl’ - k212 4 P~IKP~’ - h + k2j2 + m21Kk, - k2j2 + ~~1 ’ 

[(PI - W2 + P~I[(P~ + p2 - W2 + m21 1 
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Combining the denominators as in (3) and associating the factors (x, - x,+~) 
with each denominator, the results of Table I are found. 

The combined denominator designated by Q is then 

Q = k2[x21 + Ml - x,1 + 2k, . k&4 - x21 

+ 2k,. [-(xs - X&P~ +~2> - (XP - X~PI - (x2 - ~4~211 

+ 2k, - [(x2 - 4~2' - (XI - ~2) PI’] (19 
+ m2x6 + (x5 - x6>(m2 - s) + (x4 - x5)(p2 - m”) + (x2 - x4) p2 

+ (x1 - x2)(p2 - m”> + (1 - x,) m2 
= A,,k12 + A22k22 + 2A,,k, * k, + 2B, . k, + 2B, . k, + C. 

To form x, the quantities Bi * Bj are required and the needed results are 

& * B1 = - m2[(x4 - xd2 + (x5 - xJ2 + (x2 - x3)21 

+ (x4 - x6)(x5 - x6)(2m2 - s) 

+ (X4 - x&x2 - x&u - 2m2) + (x5 - x6)(x2 - x&t - 2m2), 

& * 42 = - m2[(x2 - xd2 + (x1 - x2)21 - (x2 - x3)(x1 - x2)(2m2 - s), 

and (20) 

B, * B, = - $(x4 - x,)(x, - x&u - 2m2) + 4(x, - x6)(x1 - x,)(t - 2m2) 

- $(x2 - x3)(x5 - xa)(t - 2m2) + 4(x, - x6)(x1 - xJ(u - 2m2) 

+ m2(x2 - x3)2 + +(x1 - x2)(x2 - x,)(2m2 - s). 

The usual invariants s, t, and u are used and they are defined by 

s = -h $P212, 

t = -(PI -P1'Y, (21) 

and 

24 = -(p1 - p2’)2. 

Note that s + t + u = 4m2. 
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At this point the kg integrations may be carried out in accordance with (7) 
and the numerator found by (13)-(15). The result is 

x {ii; Y5 w41 Y5 [Q21 Ul uz Y5 v31 Y5 P4lY5 u2 X 
-3 

+ ?/IL 92 Q3 Yu Ql4 x-2/2 

+ Yu Q2 Yu Q4 a3 x-2/2 

+ YU YU Q3 -Q4 a2 x-2/2 

+ a Yu Q3 Yu Q24 x-2/2 

+ Ql YP YU -Q* Q23 x-2/2 

+ Ql Q2 YU YLl Q34 x-2/2 

+ YU YP YY YV a2 93, x-v 

+ YP Y” YLI Y” Q3 Q24 x-v 

+ YU YY YV YIA Ql4 a23 x-w. (22) 

The Szij are defined by (lo), and using (ll), one finds 

D. Reduction to proper Amplitudes 

One remaining task is that of reducing the expressions in (22) to combinations 
of the five NN amplitudes. The operations required for the reduction of these 
expressions are quite tedious but they are straightforward. Expressions of the form 

can be readily reduced to 

W5Wy * pz + BIUI , (25) 

by use of the properties of the y-matrices and the Dirac equation. Combinations 
of the type 
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require more care. This can be written as 

This is still not the desired form (16) so that further reduction is required. As 
discussed by Amati, Leader, and Vitale [15], the coefficients F and G must ulti- 
mately vanish due to TRI. Typically they are not zero at this point but vanish 
only after the integrations over xi are carried out. However one can verify the 
TRI properties without the uncertainty of numerical integration. This is done by 
assigning the parameters (xi’ - x:+~) to the lines of the graph in such a way that 
on the time-reversed graph, the parameter (xi’ - xi+r) corresponds to the param- 
eter xi - xi+1 on the analogous line of the original graph. This, of course, amounts 
to another choice of assignments of the parameters to the lines of the graph. An 
example is shown in Fig. 4. 
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t I 

* 3 3 x;-x;l II-x; 
I 
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d--+--L - 

x3 Xi 

FIG. 4. Method for time-reversal-invariance check. 

Using this example, one can proceed with the TRI check by evaluating the 
coefficients A through G with an arbitrary set of xi , then solving for a new set 
of xi’ defined by 

Xl’ - x2’ = x1 - x2 , 

x3’ = xs ) 

x2’ - x3’ = 1 --Xl, (28) 

and 

1 - X1’ = x2 - xg . 
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The resulting set of values for xi’ is then used in place of the xi to again evaluate 
A-G. The result is that the values of the proper amplitudes are unchanged while 
those which are not TRI change sign. Since the Jacobian of (28) is unity, the result 
is that such terms as those with coefficients F and G can be ignored after the check. 

Other terms of (27) contain a y,, between each pair of spinors and a convenient 
way of reducing such terms to the form (16) is that of expanding yFyu by compo- 
nents using a set of four orthogonal vectors in the center-of-mass system. We take 
these vectors to be 

B = PI - PZ = (0, O,~P, O), 

c = Pl +p2 = (O,O,O, 2w, 

A = cos O(p, - p2) - (pl’ - p2’) = (-2~ sin 8,0,0,0), (29) 

and 

The vector X has the property 

iy * X = -iy2A,B,C4 = (iy * A)(iy * B)(iy * C) y5 . (30) 

The gamma matrices can now be expressed as 

and 

3/o = 74 = (Y . w5~, 

y1 = -(y . A)/2p sin 19, 

y2 = (y - X)/8ip2E sin 9, 

~3 = (Y * B)/~P. 

One can now proceed as in this example: 

(31) 

-hL)(YsYu) = - (1/4E2)(r& . C)(Y& * c> 
+ (1/4p2 sin2 @(r& * A)(y& * A) 

- (1/64p4E2 sin2 e)(y& * X)&y . X) 

+ U/~P~)(Y& * B)(Y& * B). (32) 

Using the definitions of the vectors and the relation (30) along with the invariants 
in the center-of-mass system 

s = 4(p2 + my, 

t = -2p2(1 - cos e>, (33) 
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and 

one finds 

24 = -2p2(1 + cos e>, 

(Y5YJY5YJ = wwm”(~ - 4” [(l)(l)1 - mw - s2MlW ‘PI) + Gr .P2)(l)l 

+ 6 + 4” [GY . P2)GY * Pdl 

+ t(u - s) [ (y5iy * (qq) (Y5iY * (qq)] 

- 4m2 ~24 bJbJ1~. (34) 

A complete set of such relations is given in the appendix. 
Expressions from (22) which contain a pair of yu factors between the same 

spinors are readily reduced by the properties of the y-matrices. However the last 
two terms in (22) are different. These terms such as 

(Y5YUY5Y”Y5)(Y5YiLYsYYrs), (35) 

can be reduced by noting that 

YSYrrYSY"Y5 = I Y5 ifv=p 
y  yB if v # p where 01 # /3 and (II, fl # TV, v. (36) 

u 

Thus one finds 

(Y5YUY5Y"Y5)(?/5YUYsYYrS> = 4(Y5XY5) - 2 c GYuY")GYuY")* (37) 
U>Y 

The second term is the tensor combination which can be written in the form (16) 
using the results of Amati et al. [15] as given in the appendix. 

E. Integration 

At the conclusion of the manipulations in the last section, one has expressions 
for the five amplitudes of the form 

The only practical means of evaluating such multiple integrals is by Monte Carlo 
methods. Unfortunately the integrands generally are not very smooth functions 
so it is desirable to optimize the procedure beyond simple random sampling over 
the region of integration. 
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In order to improve on the Monte Carlo method, we have first made the follow- 
ing change of variable: 

x1 = yy, 

x2 = x,(1 - y&l/(+-l), 

xg = x,(1 - y3)ll(+2), 

x72 = x,-10 - Yn), 

so that each of the new variables runs over the range zero-to-one and we have 
divided the resulting hypercubic integration region into a set of hypercubes of 
equal volume. We then deal with each hypercube individually. Thus if there are n 
integration variables and each dimension is divided into m units, there will be mn 
such cubes. The Monte Carlo method is then applied to each cube so that the 
total estimated error is minimized subject to the condition that the total number 
of trials is fixed at N. 

If ui denotes the estimated standard deviation in the i-th cube in which Ni 
samples are taken, then 

For a well-behaved integrand, the rate of convergence of the Monte Carlo method 
is proportional to N!‘2. The error estimate is 

(Error)2 = $ c,“/Ni . 
i=l 

(40) 

Thus in order to minimize the error subject to the condition that N = C Ni is 
fixed, it must be the case that 

Ni oc ui . (41) 

Accordingly we have adopted the following procedure: 

(a) Divide the region into m” hypercubes. 

(b) Estimate oi by using an equal number of samples in each hypercube. 

(c) Integrate each hypercube independently by the Monte Carlo method 
using Ni oc ui and add the results appropriately. 

This procedure may be iterated as many times as needed to obtain the desired 
precision. Generally it is found that this method is superior to the straightforward 
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Monte Carlo method because relatively few of the hypercubes give a major 
contribution to the error. 

Another problem is that presented by the unitary cuts arising at the elastic 
threshold for the graphs of Figs. l(e) and l(f). As a function of S, the amplitudes 
for these graphs have cuts for s > 4m2 and this makes the evaluation of the 
amplitudes difficult due to the singularity of the integrand. In order to handle 
this problem we evaluate the amplitudes off the axis by changing s to s + ie and 
then attempting to extrapolate to E = 0. 

The quantity x appearing in the integrand is linear in s and it can vanish, thus 
producing the singularity and the cut. Writing x as 

x = W) + &A (42) 

and introducing s -+ s + ic, the real part of the amplitude Aj of (38) becomes 

Re A$ = Lii~ 1 dxi flfj 
x3 - 3xg2c2 

[x” - 3xgwy + [3x2gr - Gg”]” * (43) 

The integral is now well defined for E > 0 and the only question remaining is 
that of investigating numerically the behavior as a function of E to determine 
whether or not the extrapolation to E = 0 is feasible. 

These methods may satisfactorily provide the full amplitudes but in order to 
properly evaluate the results, the contributions to the partial-wave amplitudes 
are required. Therefore one needs a partial-wave projection which will require 
an additional integration over angle. Furthermore, the five amplitudes must be 
combined appropriately to describe transitions among the usual states. 

The Aj coefficients can be related to the Fj coefficients of Goldberger, Grisaru, 
McDowell, and Wong [16] where the Fj coefficients are defined by 

F = F,(S - 3) + F,(T + rt”) + MA - a) + FO’ + p) + W’ - 6 (4.4) 

Details are given in the Appendix. 
In terms of the Fi coefficients, the partial-wave projection of the singlet amplitude 

is 

kr = ; s’, 4 cos 0) PJ(cos 6) & {(E2 + m2) Fl - 2p2Fz cos 8 

- (3E2 + 3m2 + p2) F3 + p2F,}. 

hJ is related to the singlet phase shift by 

hJ = (E/2imp)(e2i”J - 1). 

The results for the other amplitudes are given in the Appendix. 

(45) 

(46) 
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In order to compute hJ it is efficient to combine the integrands for the Fi ampli- 
tudes according to (45) and then integrate them all at once. It should be expected 
that the accuracy with which a given partial-wave amplitude can be found will 
decrease with increasing J since the magnitude of the partial-wave amplitudes 
decreases with increasing J while the error remains fixed. 

Two methods have been used to carry out the partial-wave projections. For 
cases in which the estimated error of the full amplitudes was less than about 1 %, 
the integrals over angle were carried out by Gaussian quadrature. In cases of 
limited accuracy a useful procedure was found to be that of taking appropriate 
sums of the full amplitude evaluated at definite values of cos 19. For example, if 
one needs the I= 1 part of 

f(z) = h + Wl(Z) + W2(4 + 7&P&) + **- 2 
then 

fi = V(zJ -f(-~d/@'d~d, 
where P&z,) = 0. 

(47) 

(48) 

F. Other Graphs 

The methods discussed are readily applicable to those graphs of Fig. l(e)-(h). 
The graphs of Fig. l(i) and (j) are somewhat different and they present other 
problems as regards the spinor algebra. Using the procedure indicated earlier, 
the “basic term” for these graphs is 

~lY5~lY5~2Y5~3Y5u1u2Y5524Y5U2 - (49) 

Following the substitution procedure, the integrand will be of the form 

Q4-JI1 Y5Pm Y&-u Y5W2Y5W41 Y&2 x-3 

+ YIJ YU Q3 Q4 Q1zx-2/2 

+ Ylb Q2 Yu 4 Q13x-2/2 

+ YU Q2 Q3 YU Q14x-2i2 

+ Ql Yu Yu Q2, Q22x-2/2 

+ Ql YIL J-4 YU Q24x-2/2 

+ 01 Q2 Yu YP Q34x-2/2 

+ YU YLI YY YV Q12Q2aX-1/2 

+ YU YV YF YV Qd4,p/2 

+ YP YY YV YU Q,4~22x-V. w 

Since an even number of y5's occur between pairs of spinors, all ~5)s can be 
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eliminated in favor of some changes of sign. Consequently, terms of the form 

&y&factor containing 0 or 2y,‘s] ysz41EZy$2~y,u, (51) 

can readily be reduced to 

&[A& * pz + 4 u,fi,[Ciy *p1 + Bl 4 . (52) 

Terms of the form 

ti,y,[factor containing 1~~1 y~u1UZys~U~sz42 , (53) 

can be written as 

&~uW2w2 

+ Bi&iy . p2u,U,iy . plu2 

+ cii,iy . p2u,u2u2 

+ DQw2iy * plu2 
+ E&u&u, 

+ FQdy * P~W~Y,U~ . (54) 

All terms except that with coefficient F are in the standard form (16) and it can be 
handled as indicated in the appendix. 

Finally the last three terms of (50) can be reduced to 

- - 
~lY!PlU2Yu~2 9 (55) 

and the reduction is complete. 
The graphs of Fig. l(a)-(d) are of a different character from those already 

discussed in that they result from the X+4 interaction. The graph of Fig. l(a) is 
easily handled using the technique of Anderson, Gupta, and Huschilt [17]. The 
result is 

F = - i h(g2)' --J$ [ J1 dx “2’1kl x, ln ( i: T i: )I’ g+,iz,u, , (56) 
0 

where k = d-t and z = [u2x + m2(1 - x)” + k2x2/41112. Since only one inte- 
gration is required, this amplitude is easily computed with sufficient precision to 
allow projection of the required partial waves. 

The other graphs containing the h+4 interaction are more difficult, partly 
because they must be renormalized. Consider the graphs of Fig. 5. The graph 
of Fig. 5(a) requires a renormalization due to the internal loop. The procedure 
for such a renormalization requires that the loop shown in Fig. 6 be subtracted 
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so that it gives no contribution at the symmetry point s = t = u = 413~~. Here 
s, t, and u are taken as if the loop in Fig. 6 were external, that is s = -(k, + k3)2. 
Consequently, the amplitude for Fig. 5(a) is renormalized by subtracting the 
amplitude for Fig. 5(b) evaluated at Q2 = -4/3pz, treating Q as an external 
momentum. The graph of Fig. 5(c) must also be evaluated and comparing it with 

p2 p2-k3 P; p2 p2-kj P; p2 p2-k3 P’ 
2 

(al (id (cl 

FIG. 5. Graphs used for the A renormalization. 

Fig. 5(b), it is clear that (c) is given from (b) using Q = p1 - pl’. The remaining 
graph of Fig. l(d) is related by crossing symmetry to that of Fig. 5(a). That is, 
upon the interchange p 2 7t --p2’ or, equivalently, s * u plus changes of sign of 
the coefficients A, and A, in (16), the amplitude for Fig. 5(a) is changed to that 
for Fig. l(d). 

‘\ 
‘14 

/’ 

‘\ 
k2+k,+k3 

Y---- 

---_. 

’ ” 

A,-(p,-p;) 

/’ ‘. 
K 

‘3 

--------r .’ ‘\ 

/’ % 
‘\$-(P2-p;) 

I ‘\ 

FIG. 6. Internal loop. 

The amplitude for the graph of Fig. 5(a) is 

t;a = 2ig4h2fnS 1 d4k,d4k2d4k, ‘ly5’iy * (PI - kl) - ml ‘ys’l 

[(A - W2 + m21k2 + p21 

c2Y5[iY ’ (P2 - k3) - ml Y5”2 

’ Kk, - (PI - ~1’)~ + p21Kh + k, + M2 + p21k2 + ~~1 
1 

’ Lb2 - kd2 + m21Lb2 + cL21Kk3 - b2 - ~~‘1)” + ~‘1 * (57) 

Assigning the Feyrmran parameters in the order of appearance of the propagators 
in (57) so that the first has a coefficient x7 , the second (x, - x,), etc., and assigning 
the momenta Pi, the results of Table II are found. 
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TABLE II 

Parameters associated with the graphs considered for the renormalization 

i 1 2 3 4 5* 

ci 
a, 

ai 

ait 

P’ 

X7 x2 - x3 x5 - xg 1 - x, x4 - x5 
-1 0 -1 0 0 

0 0 0 0 1 

0 -1 0 -1 0 

Pl PZ PI -PI’ Pz - Pz’ Q 

The parameters occurring in the expression (9) for x are 

All = x4, Al3 = x4 - x5 9 

A,, = x3 - x5 > A23 = ~4 - ~5, 

A,, = x4 - x5 + 1 - x3, A,, = x4 - ~5, 

Bl = --x,P1 - (x5 - %)(Pl -P1’), 
B, = 0, 

B3 = -6, - x,)P, - (1 - xd(p, -pz’), 

(58) 

c = p2(x3 - x, + 1 - x2) - t(x5 - xg + 1 - x,). 

Following Chisholm’s method, we find 

+ 'lY5Y~Y5~1~2~5Y1lY5~2~12x-~}. (59) 

Noting the form of Qni from (ll), it is apparent that by use of the Dirac equation 
we can write 

Fa = A[ii,u,ii,u,] + B[u,iy . p2u,U,iy * plu2] 

+ CFliY * P2UI~2U21 + D[w4,ii,iy . pzu21 

+ -w1Y!Lw2YP21~ (60) 

Considering the graph of Fig. 5(c), which is equivalent to that of Fig. 5(b), 
it is seen that its amplitude will contribute only a coefficient to the “scalar” spinor 
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combination G,yU2u2 . Consequently, only one of the terms of (60) requires 
renormalization. This renormalization is conveniently done by evaluating the 
amplitude of Fig. 5(b) in a manner parallel to that used for Fig. 5(a). The only 
difference is that the momentum Q is treated as an external momentum so that 
there are five Pi’s rather than four. The associated parameters are also given in 
Table II. The parameters needed for forming x are the same as in (58) except that 
now 

and 

All = x5 7 Aij = 0 (i #A, 

A,, = 1 - x3, & = (x, - x,)Q, (61) 

C = /.2(x3 - x, + 1 - x2) - t(x, - xg + 1 - x,) + Q”(xl - xJ. 

Equation (59) holds equally well for Fb except for the changes in x, L?, , and Szij . 
Evaluating the required expression it is found that L?;, = 0 and that Q does not 
appear in the numerator. In fact, this contributes only to the scalar amplitude 
and Fb can be written as 

Fb = 2m2g4X2/n2 iilu,ii2u, 
s 

dxi x7(x2 - x3) 
x5(1 - x3) x2 * 

The renormalized amplitude for the graph of Fig. 5(a) is 

F/ = F” - F”(Q” = -4/3p2), (63) 

and that for Fig. 5(c) is 

FRc = F”(Q” = -t) - Fb(Q2 = -413~~). (64) 

Finally the amplitude for the remaining graph of Fig. I(d) is 

F = F&with s Z? u plus a sign change of A2 and A&. (65) 

Since Fa and Fb are evaluated using the same assignments of Feynman parameters, 
the required renormalizations can be done by simply subtracting the integrands. 

The integrands for these graphs contain not only the singularity requiring 
renormalization but also boundary singularities which occur when some combina- 
tions of the Feynman approach their extreme values. These singularities are 
integrable but some are too severe to be handled by Monte Carlo methods. In 
order to control this situation, we have made a change of variable suited to handle 
integrals of the type 

s 1 

0 dx(p"- x) * 

5W10/3-14 

(66) 
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This integral has integrable singularities at the end points and it is unsuitable for 
Monte Carlo integration. To correct this we seek a new variable y such that 

and 
y(x = 0) = 0, (ax/ay)(x = 0) = 0, 

y(x = 1) = 1, (ax/ay)(x = 1) = 0. 
(67) 

The derivative conditions are satisfied if 

way - ~(1 - Y), or x - y2/2 - y3/3. (68) 

The other conditions then imply 

x = 3y2 - 2y3. (69) 

Now as y -+ 0, x(y) --+ 3y2 and the integrand approaches a constant. Similarly 
for y -+ 1. In the same manner one could use 

axlay = yyi - yy, (70) 

giving 

x = 10~3 - 15y4 + 6~~. 

This method is applied by making the same transformation on all the Feynman 
parameters independently and it results in a smoothing of the integrand in spite 
of the fact that the singularities are not exactly of the form (66). 

G. Branch Cut Singularity 

The amplitude for the graph of Fig. 3 has a branch cut as a function of the 
energy variable s beginning at the elastic threshold. Earlier we described the 
s--f s + ie method of handling this difficulty. However, it is found that a more 
powerful technique is required to obtain results of reasonable accuracy. The 
branch cut appears in the Feynman parametric integral as a pole in the integrand 
and after the substitution s --+ s + ie there remains a large ridge in the integrand 
making numerical integration difficult. 

The denominator is of the form x3 so that there is a singularity at x = 0. Now x 
is quadratic in x1 , so that we can write 

x = axI + bx, + c, (71) 

where a, b, and c are functions of the remaining xi as well as s and t. 
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Since x is to the third power, the sign of the integrand is different on opposite 
sides of the singular hypersurface x = 0. We want to exploit this fact by employing 
a procedure which, upon encountering a point near the singular surface, averages 
with the resulting value, the value of opposite sign taken from the “other side” 
of the surface. Great care must be taken to assure that the method of finding 
the opposite point is symmetric. That is, there must be a one-to-one correspondence 
between the points. Our procedure is as follows: 

(a) Choose a random number vector (x1 , x2 ,..., x,). 

(b) Taking x2 through x, as fixed, solve x = 0 giving either 2 or 0 real roots. 

(c) If the roots are complex, proceed in the usual way. 

(d) If the roots are real, find the one closer to x1 and call it Root 1. 

(e) Find the point on the opposite side of the x = 0 surface by 
xlf = x1 + 2(Root 1 - x1). 

(f) Check to see if xlf is in the region 1 > xlf > x2 . If not, disregard x,f 
and proceed in the usual way. 

(g) Check to see if xlf is closer to Root 1 than to the other root. If not, 
disregard xlf and proceed in the usual way. 

(h) Evaluate the integrand at the two points (x1 , x2 ,..., x,) and (x/, x2 ,..., x,) 
and average the results. 

This procedure has been used in conjunction with the transformation of (69) 
for boundary singularities. This requires that the contribution from (x/, x2 ,..., x,) 
be weighted according to the changed Jacobian since the Jacobian depends on x1 . 
In order to do this, it is necessary to solve the cubic equation (69) for y. 

H. Isospin 

Up to this point nothing has been said concerning the isospin structure of the 
amplitudes. Each graph gives a possibly different contribution to the isospin 0 
and 1 states of the two nucleons. The interaction Hamiltonian with full isospin 
structure is 

I = Siji(4rr)1’2 gNy5TiN49 + 4Th(8iJkl + 6i$jl + 6,J.j,) +i+j#k$l . (72) 

The isospin wavefunctions in terms of the individual particle states is shown 
in Table III. Using this information one finds that the isospin factor, for example, 
for the graph of Fig. l(e) in the I = 1, I3 = 1 state is 

C X+t(l)[TiTFd x+(l) X+t(2)[TtTjTkl X+(2). 
ijk 

(73) 
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For the Z = 0, Z3 = 0 state the result is 

+ ; [X++(l)biTd X+(l) X-+(2)biTd X-(2) 

+ X-+(l>biTd X-(l) X++(2)biTd X+(2) 

- X++(l)[TiTd X-(l) X-+(2)[TiTiTd X+(2) 

- X-+(l)[TiTiTlcl X+(l) X++(2)biTd X-(2)1. (74) 

The factors for the graphs of Fig. l(f)-(h) are similar except for the ordering of 
the indices on the second set of 7%. 

TABLE III 

Isospin states where 1 or 2 labels the two particles and where 
x+ = (3 and x- = (3 

Z 1, Xtota1 

1 1 x+(0x+(2) 

1 0 1 I z/zx+(1)x42) x-wx+m + 

1 -1 x-(1)x-(2) 

0 0 Udax+(lM2) - x-(1)x+(2)) 

TABLE IV 

Isospin factors associated with the graphs 

Figure Z=l z=o 

164 15 15 

l(b) 15 75 

l(c) 15 75 

l(d) 15 75 

l(e) 1 -27 

l(f) 5 9 

163) -7 -3 

l(h) 13 -15 

16) 11 3 

1c.i) 7 15 
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For the graphs of Fig. l(i) and (j), the combinations of 7’s occurring in the 
brackets become 

[TiTjWih [Tid and biTi%Til~ blcTj]z 3 respectively. (75) 

The graph of Fig. l(a) gives an isospin factor of 

kiTj.11 [T~cdt @&ct + ‘&k&t + sit%d, (76) 

while the remaining graphs of Fig. (b)-(d) give 

[TiTj]l [T~CTZIZ (~&nn + 6imajn $ 6,nL) X (A,~arnn + 6/en~tn + S,nhnJ- (77) 
Evaluating all these expressions, the results of Table IV are found. 

III. REBULTS 

Evaluation of the sixth-order ladder graph of Fig. l(e) by the techniques 
described requires an extrapolation to E = 0. An example of this extrapolation 
is shown in Fig. 7. One sees that this extrapolation is very uncertain and it is 

-4 4 

FIG. 7. Example of the extrapolation for the case of the sixth-order ladder graph in the I+!& 
state. The * and x represent results of the first and second iterations. 
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suited only for order of magnitude estimates. Consequently we have used the 
results of a calculation in which the Bethe-Salpeter equation is iterated [18] to 
find the ladder graph amplitudes. We can give only the ‘S,, and 3P, amplitudes. 
The E = 0 point of Fig. 7 is provided by the Bethe-Salpeter calculation. 

For the graph of Fig. l(f) the extrapolation is much better as demonstrated by 
Fig. 8. Still a precision of no more than 10 % can be achieved so that the extraction 
of partial-wave amplitudes will be limited. 

~05 e = 0.239 

FIG. 8. Example of the extrapolation of the dominant part of the full amplitude of a singular 
sixth-order graph. The . and x represent results of the first and second iteration. 

It is important to note that any reducible graph (graph with a two particle cut), 
including l(f), can be calculated by putting the irreducible parts into a Bethe- 
Salpeter kernel [20]. 

The graphs of Fig. l(b)-(d) h ave integrable singularities at some boundaries 
and a prescription for improving this situation was described in the last section. 
The results of this modification are such that for the graph of Fig. l(b) a great 
improvement is realized. This is shown in Table V. 

We have found that in order to produce usable partial-wave amplitudes through 
G waves, it is necessary that the error in the full amplitude will be less than 1 %. 
This is am empirical conclusion based on the observation of the stability of the 
partial-wave amplitudes while increasing the number of Monte Carlo points. 

The procedure of dividing the region into hypercubes and assigning the number 
of Monte Carlo points according to the relative error is found to be valuable. 
Typically, for the suitable cases, it is found that the error estimate for the ampli- 



SIXTH-ORDER EFFECTS IN NUCLEON-NUCLEON SCATTERING 591 

TABLE V 

Effects of the transformation used for integrable boundary singularities 

Transformation Error estimate 

x=y 24% 

x = 3y2 - 29 3.6% 

x = loya - 15y4 + ‘5~’ 3.0% 

tudes improves by better than a factor of two upon going to the second iteration. 
This contrasts with the expected improvement of a factor of 1/2 for the usual 
Monte Carlo doubling of the number of points. However, this procedure takes 
up time that could be used for the usual method so that it must be fairly effective 
to merit its use. For smoother integrands such a procedure is not efficient since 
its effect is that of nearly maintaining the already smooth distribution. 

In order to extract the real part of the amplitude for the graph of Fig. 3, we 
have used s + s + ic and sampled on either side of the singular surface. This 
method of dealing with the singular surface has given a great improvement over 
the s + s + ic method, especially when used in conjunction with the method of 
hypercubes discussed in the last paragraph. It would not have been practical 
to attempt to evaluate such an integral without some such method for dealing 
with the integrand with such large peaks. Still we have only been able to extract 
useful information for the J = 0, 1, and 2 cases. 

The numerical results of this calculation are given in TablesVI-VIII. The 
units are such that m = ti = c = 1. E = dp” + m2 and (p/m)2 = ELA,/2m. It is 
important to note that a factor 2 due to the Pauli principle is not included in the 
tabulated numbers. As an example of conversion to move standard quantities, 
we convert the results of Ref. [18] to the results tabulated in Table VII 
(ELAB = 100 MeV) for the ‘S,, case. In this paper, Table VII gives for OPE + Box 
graph, 

Re h,(Y$,) = -0.0947 g2 + 0.0250 g* + *** , 

which does not include a factor 2 due to the Pauli principle. In reference 18, in 
Table VIII for the 15 x 15 mesh, IS, state, 

tan &?Y,J = -0.04263 g2 + 0.0126 g4 + ..a . 

In reference 18, we used a g2 such that g2/4rr = 14, and in the present we use a g2 
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TABLE 

Values of the real parts of 

OPE BOX X-BOX 1 (a) 

‘SO 

3Pll 

lP1 

3P1 

% 

ah 

El 

ID2 

SD2 

3P2 

SF, 

62 

5 

% 

99 

SC+3 

E3 

lG4 

Q 

SF4 

3H4 

E4 

-5 

a& 

G 

% 

E5 

No. of 
Points 

-.798x 10-l 

.798x 10-l 

-.382x10-’ 

-.463x 10-l 

- .798 x 10-l 

-.208x10-’ 

.835x 10-l 

.428 x 1O-2 

.294x 10-l 

.416x 1OF 

.135x 10-z 

-.689~10-~ 

-.461x 1O-2 

-.284x 1OF 

-.289x 1O-2 

-.102x 10-Z 

.650x 1O-2 

.571 x 10-B 

.280~10-~ 

.264~10-~ 

.969~10-~ 

- ,747 x 10-S 

-.652x 1O-3 

-.326x 1O-3 

-.238x 10-a 

-.896x 1O-4 

.812x 1O-3 

1 

.251 x 10-l 

.371 x10-2 

.236x 1O-2 

,124 x 1O-2 

.202x 10-O 

-.799x 10-Z 

-.379x 10-Z 

.269 x 1O-4 

535x10-3 

.594x IO-3 

-.272x 10-j 

-.144x 10-b 

.273 x lo-” 

s41 x10-5 

.383 x 1CF 

-.307x 10-1 

-.100x10-~ 

.388x lo-” 

.567 x lO+ 

.428 x 10-j 

.266x lo-’ 

-.116x10-” 

.486x lo-” 

.829x lo-’ 

.459 x 10-j 

.595x 10-7 

-.126x 1O-B 

10s 

.374x 10-l 

- .238 x 1O-2 

-.117x10-2 

,757 x 10-3 

-.247x 10-l 

-.362x 1O-4 

-.398x 1O-3 

.142x 1O-s 

- .660 x 10-4 

.140x 10-Z 

.901 x 1 o-5 

.154x 10-h 

-.864x 10m5 

.123 x lo-* 

-.767x 1O-4 

- .709 x 10-G 

-.662x 1O-6 

.170x10-5 

-.897x 1O-6 

.133x10-4 

.161 x 1O-6 

.108 x 1Om8 

-.132~10-~ 

.197x 10-e 

-.954x 1ome 

-.137x10-’ 

-.751x 10-B 

-.469x lo0 

-.190x10-’ 

-.231 x10-l 

-.210x 10-l 

-.469x lo0 

-.190x 10-Z 

.635x 1O-5 

- .208 x lo-* 

-.202x 10-Z 

-.251 x10-l 

-.216x 1O-3 

.211 x 10-6 

-.232x 1O-3 

-.228x 1O-3 

-.221 x10-2 

-.278x 1O-4 

.134x 10-7 

-.295x 1O-4 

-.291 x 1O-4 

- .244 x 1O-5 

-.390x 10-S 

.115x 10-S 

-.410x 10-S 

-.406x 1O-5 

-.309x 10-a 

-.120x 10-S 

.116~10-~ 

103 102 

-.41 x 100 

.54x10-’ 

.50x 100 

.52x 10-l 

-.41 x 100 

.64x 1O-2 

.6x 1O-5 

.68 x10-2 

.67 x 1O-2 

.48 x 10-l 

.9x10-3 

-.4x 10-e 

.9x 10-s 

.9x 10-B 

.7x 10-s 

.l x 10-S 

-.4x 10-1 

.l x10-3 

.l x10-s 

.9x 10-a 

.2x 10-a 

-.4x10-@ 

.2x10-” 

.2x 10-4 

.l x10-s 

.3x10-5 

--.5x10-9 

-.17x 10’ 

-.36x 10-l 

-.67x 10-l 

-.54x10-1 

-.17x10’ 

-.45x 10-z 

-.21 x 10-Z 

-.54x10-2 

-.51 x10-2 

- .73 x 10-l 

--.5x 10-a 

-.7x10-4 

-.6~10-~ 

-.5x 10-a 

-.6x 1O-2 

-.6x 1O-4 

-.4x 10-j 

- .7 x 10-a 

-.7x10-4 

-.6x 1O-s 

-.8x 1O-5 

-.4x 10-s 

--.9x 10-h 

-.9x 10-S 

-.7x 10-a 

-.l x10-5 

-.4x lo-’ 

106 106 
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VI 

the h functions at 50 MeV 

593 

l(e) l(f) l(g) 104 l(i) l(j) 

-.20x 10’ 

-.65x 10-l 

---.68x 10-l 

--.64x 10-l 

--.20x 101 

-.53x 10-Z 

.20x 10-Z 

-.55x 10-z 

--.54x IO-2 

--.78x 10-l 

---.5x10-3 

.6x 1O-4 

-.6x 1O-3 

-.6~10-~ 

-.6x 1O-2 

--.7x IO-4 

--.4x IO-5 

--.7x 10-4 

--.7x10-4 

- .6 x 1O-s 

-.9x 10-S 

--.4x 10-B 

--.9x 10-S 

-.9x 10-S 

-.7x IO-4 

--.I x 10-5 

.4x 10-T 

106 

-.53 x10-2 .I1 x10-1 .32x 1O-2 

.44x10-s - --.12x 10-Z 

- - - .97 x IO-4 

- - .51 x10-3 

- - - .39 x 10-B 

- - --.14x 10-j 

- - .13x IO-3 

- - --.31 x10-5 

- - .19x 10-S 

- - - .83 x 1O-5 

- - -.6x lo-’ 

- - .36x lO-5 

- - -.5x 10-7 

- - .15x 10-C 

- - .3x10-7 

- - -.8x 10-O 

- - .5x 10-7 

- - -.5x 10-S 

- - .3 x IO-8 

- - .3x 10-g 

- - -3x 10-10 

- - .6x lo-* 

- - -.l x10-9 

- - .4x 10-s 

- - .I x 10-10 

- -.2x lOWI 

- - .l x10-Q 

- 10’ 105 

.15x10-2 -.14x10-’ 

.29 x 1O-3 .95x IO-3 

-.32x 1O-3 - .20 x IO-” 

- .49 x 10-S --.45x 10-h 

.44 x 1 o-3 -.41 x10-2 

-.19x10-5 -.15x 10-k 

.38x lO-3 -.29x 1O-4 

.17x 10-S -.81 x 1O-4 

.33x 10-S --.19x10-p 

-.13x 10-d -.ll x10-2 

.4x 10-7 - .78 x 1O-5 

-.24x 1O-5 -.l x10-6 

-.8x10-’ --.2x 10-s 

-.l x 10-6 -.88x 1O-5 

-.2x 10-G - .26 x lo-* 

-.l x10-s --.3x 10-B 

.l x10-6 --.I x10-1 

.3x 10-S --.l x IO-5 

.5x 10-e --.3x10-6 

.l x 10-B --.l x10-p 

.5x IO-10 -.l x10-6 

--.4x IO-@ -.3x 10-s 

-.2x 10-9 -.4x IO-’ 

-.2x 10-g -.I x 10-6 

--.l x 10-Q -.3x IO-6 

--.3x IO-” --.5x 10-s 

.2x 10-Q -.6~10-~” 

105 105 

--.39x10- 

-.15x 10-a 

- .23 x 1F 

--.12x 10-Z 

-.82x 10-l 

--.19x 10-a 

.13x10-s 

-.85~10-~ 

--.18~10-~ 

--.11x10-2 

--.96x lO-6 

-53x10-6 

-.21 x 10-4 

--.97x 10-b 

-.19x 10-S 

-.27x 10-S 

.l x10-6 

--.l x10-5 

--.3 x10-5 

-.I x10-4 

--.2x10-~ 

.4x 10-e 

-.4x10-6 

--.2x 10-s 

--.3 x IO-5 

--.6x10-’ 

.l x10-H 

105 
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TABLE 

Values of the real parts of 

OPE 

‘Sll -.941x 10-l 

‘PO -947 x 10-l 

lP1 -.331 x10-1 

“Pl -.529x IO-’ 

aS, -.947x 10-l 

aD1 -.308 x10-1 

El .904x 10-l 

-2 .476 x 1OP 

-2 .404 x 10-l 

aP2 -617 x 1OF 

aF2 .253x 1O-2 

% -.892x 1OP 

‘F, --.657~10-~ 

SF8 --.480x 10-Z 

aD3 --.542x 1OW 

C -.242x 1O-2 

% .1o4x1o-1 

lG4 .104x10-2 

aG4 .589 x 10-a 

aF4 .627x 1O-s 

aH4 ,293 x 1O-s 

Q --.149x 10-Q 

‘H, --.152~10-~ 

a& - .863 x 1OW 

Q5 - .719 x 10-S 

% -.345x10-8 

% 205 x 10-a 

No. of 
Points 1 

BOX X-BOX lb> N-4 
- 

.250 x 10-I .322x 10-l 

.530 x 10-Q - .499 x 10-s 

.309x 10-2 -.177x 10-S 

.169 x 10-Z .800x 10-a 

.190x 100 --.235x 10-l 

- ,229 x 1O-2 -.615x 10-a 

-.508x 1O-2 -.733 x 10-Z 

,570 x 10-a .336~10-~ 

.106x 1O-2 -.146x 1O-3 
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the h functions at 100 MeV. 
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TABLE 

Values of the real parts of 
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such that g2 = 14; that is, g2/4n (reference 18) = g2 (present work). The factor 
connecting the two expansions is 

Re h&S,) = & tan S(l&). 

In higher orders, this last equation has to be modified to take account of the fact 
that 

h,(l&,) = & Re [ exp(2i*(>)) - ’ ] . 

= +$ sin S(W,) cos S(?S,) 

E tan S(lS,) =- 
2mp 1 + tan2 S(lS,) 

= & [tan (l&J - tan3 (?S,) + a..] . 

It must be remembered that the 2 in E/2mp occurs because the Pauli principle 
factor 2 has not been included in Tables VI-VIII. 

Using E = m (p/m)” = E,,,/2m, we find for ELAB = 100 MeV, 

(p/m)” = loo MeV = 0.05319, 
2(940) MeV 

so that in units such that m = 1, 

E - VP?- = - _ - _ 2.22 5, 

2mP 2w 2 do.05319 

which agrees with the ratios (0.0947/0.04263) and (0.0250/0.0126). 
The entries such as ‘S, , “S, , 3D, , 2, , in Tables VI-VIII, refer to the real parts 

of hl 3 hM 3 h2.l 9 hl, respectively, in an obvious way, and similarly for other 
quantities. 

No effort has been made to give error estimates for the individual numbers; 
however, only significant figures are given so that the relative precision is easily 
noted. For purposes of comparison, the second- and fourth-order results are 
presented. The Pauli principle has been ignored and all graphs are taken with 
g2 = X = 1. All isospin factors and multiplicities have been included. To find the 
relative sizes of the perturbation terms, one must note that g2 w  14 and that, 
although X is not well determined, a calculation which fits the p resonance [7] 
uses X m 0.1. 
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IV. CONCLUSIONS ABOUT TECHNIQUES 

In order to estimate the effects of some higher-order graphs on NN scattering 
from perturbation theory, we have computed sixth-order graphs with pion exchange 
as well as some graphs with a h+4 interaction. We have used various techniques 
to evaluate these amplitudes. Monte Carlo integration has been employed in a 
modified form to deal with integrands that are not smooth along with an extra- 
polation s + ic -+ s + iO+ for singular integrals. In addition, we have used changes 
of variable suited to allow handling some integrable boundary singularities. 

It is found that computation of the sixth-order contributions is rather difficult, 
especially in the case of graphs which contain the unitary cut. For the ladder 
graph our methods have proved inadequate so we can only take some limited 
results from the Bethe-Salpeter calculation [l&20]. The other singular graph 
of Fig. I(f) is somewhat better in that we can find the full amplitude to within 
about 10 % using the E -+ 0 extrapolation. Still this allows us only to find the 
lower partial waves. For this graph, the procedure used for averaging pairs of 
contributions on opposite sides of the singular surface proved to be quite useful 
in improving the rate of convergence. The remaining nonsingular sixth-order 
graphs were evaluated using the method of dividing the region up into hypercubes 
and dealing with them individually. In these cases the full amplitudes have been 
found with a precision of roughly 1% which allows a partial-wave projection with 
marginal accuracy. 

The amplitudes of order g4X2 have been evaluated to an accuracy of about 1%. 
The chief difficulties with these amplitudes are the integrable boundary singulari- 
ties. These have been handled by an appropriate change of variable which s&i- 
ciently weakens the singularities that the integrals can be carried out by Monte 
Carlo methods. 

V. DISCUSSION OF RESULTS FROM A CONVENTIONAL VIEWPOINT 

The contributions to the various partial waves to the real part of the scattering 
amplitude (Tables VI-VIII) of the graphs of Figs. l(f-h), which are the three 
meson exchange graphs, confirm that these contributions decrease more rapidly 
than those of the two-pion exchange graphs (the fourth-order graphs and the 
graphs of Figs. l(i) and (j)). 

Machida and Senba [21] and Klein[l l] and others [9, lo] calculated three meson 
exchange contributions in terms of potentials. They found that the three-meson 
exchange terms decrease more rapidly with distance than the two-meson exchange 
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terms, so that the above result had to be expected. This whole idea about decrease 
of multiple pion exchanges with increasing L came to fruition when it was found 
that the one-pion exchange terms dominate the higher partial waves 12, 121. 
Since then, many attempts have been made to explain the medium partial waves 
by considering two-pion exchange and including exchange of more massive 
bosons [22-261. 

Comparing the contributions of Figs. l(i) and (j) with those of the fourth-order 
graphs, it is apparent that they decrease with angular momentum at the same rate, 
as expected. The sixth-order contributions are comparable to or larger than the 
fourth-order contributions. The fears of Partovi and Lomon [26] on this point 
appear quite justified. This is very nearly the result suggested by the early work 
of Levy [9], Ruderman [lo], and Klein [I l] based on an approximation which 
was used to generate potentials from such sixth order graphs. However, the sum 
of the radiative corrections on one nucleon line give rise to the pion-nucleon 
scattering amplitude [27], and Henley and Ruderman [28] have shown that higher 
order corrections suppress the sixth-order result. Here phenomenological 
approaches such as somehow inserting the pion-nucleon amplitude in two-pion 
exchange graphs obviously suggest themselves, but the accuracy of such approaches, 
which amount to summation of certain classes of diagrams, is not known and is 
quite foreign to the idea that the whole series may be summed by Padt approxi- 
mants. 

It has already been noted by Anderson, et al. [17] that the graph of order hg4 
behaves very much like exchange of a single scalar particle. For the graphs of 
order h2g4 we note that they fall off with angular momentum at a rate between that 
of one-pion exchange and two-pion exchange and they give mostly a spin-orbit 
type contribution to the P-wave splitting. 

APPENDIX 

For reference purposes we will give in this appendix a fairly complete set of 
relationships among this various amplitudes encountered earlier. 

The invariant amplitude F is related to the S matrix element according to the 
following: 

where iVj = { [1/(2~)3](m,/E,)}1/2. 
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Now F can be decomposed in many ways. Amati et al. [15] have written F in 
terms of perturbation invariants as 

G-42) 

The notation (X)i indicates U(pi’)[X] u(p,), and the Ai are scalar functions of s, t, 
and u. 

Goldberger et al. [16] have introduced the reduction 

F = F,(S - S)+F,(T+ T)+F&4 - A)+F,(V+ 8) +F@ - p). (A3) 

Here Fi are scalar functions and 

644) 

and 

The corresponding quantities with tildes are found by interchanging pl’ and pz’ 
in the spinor arguments. The necessary information relating the quantities with 
tildes to the others is given in the following matrix: 

sWo/3-15 
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The relationships among the Pi and the S, T, etc., amplitudes has been given by 
Amati et al. [15] as 

p 
2 

= 1 (u - s) 
m [ 4 S-m”V+$+ @ ; s, P] , 

P, = 4 [-(24 - s) V - tA + 4m2P], 

P, = v, 646) 

and 

P, = P. 

The nuclear-bar phase shifts can be written as combinations of the projections 
of the five invariant scalar functions Fi . Using the notation of Scotti and Wong [ 191 
the phase shifts are given in terms of the h functions by 

hJ = (E/2imp)(exp(2iGJ) - l), 

hJJ = (E/2imp)(exp(2iSJJ) - l), 

hJ-l.J = (E/2imp)(cos(2eJ) exp(2i&& - l), 
h J+l.J = @/2imd(cos(2EJ) exp@6J+l,J) - lh 

(A7) 

and 

hJ = (E/2imp) sin(2E J) exp(i6 J-1, J + i6 J+I, J). 

Here E and p are the center-of-mass energy and momentum of one of the particles 
of mass m. The h functions in terms of the Legendre projections of the Fi are now 

8rrmhJ = (E2 + m2) FIJ - 2J + I = ((J + 1) Fp + Jfi-‘) 

- (4E2 + 2m2) F,” + p2Fi, 

P2 
8nhJ = - 2 J + 1 - (JFY + (J + 1) E’-r) + 2m2F2J 

+ & (JF3J” + (J + 1) F;-l) + 2E2FaJ 

+ &+T (Jti’” + (J + 1) F??), 
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8?TmhJ-1,J = - pvy + 2J(J + I) (E - m)2p 
(2J + 1)” (4 

2 
--I- (w+ I>” 

(JE+ (J+ l)tt~)~F;J-~- ;;;.;‘p2FsJ 

+ ;;y;$ (E - mj2fit1 + (2J ; 1)2 (mJ + E(J + 1))2fl-1 

2 
+ 2Jp+ 1 hJ, 

J(J + 1) 1I-J 
87rmhJ = ((26 + 1)” i [ & (E’(J + 1) - mZJ - mE) Ff+’ 

-I- & (JE’ - m2(J + 1) + mE)l$’ - 6p2Fs 

4- &m’(J+ I)-E?LmE)~ 

+ & (m2J - E”(J + 1) + mE)$’ - 2pzFl] . 

From the result of (27) it is clear that three types of terms occur which do not 
readily reduce to the standard form for NN amplitudes. These are 



604 GAMMEL AND WORTMAN 

The method for reduction of these forms has been given in the text and it 
requires writing yUyP in terms of components. The results are the following: 

21 = m [ iFyT4if; ] G + Q, + m [ 2(s t 2m2) ] ps 

-m [ “‘~~‘] P3-m2[(si{)2] P2p 

_ 
[ 

0 + u>(m”(s + 4 - 4 P2N 
stu 1 

_ m [ (s - u>(m”(s + 24) - su) 
stu 1 p 

13 

2, = m 
C 

-4m2u - st 
su(s - 4m2) ] G+Q,+m [ 2(s~2m3] P, 

s2 - 242 
-m C stu I 

p, - m2 [ (’ - ‘)‘I 
stu 

p,N 

_ 
[ 

6 + 4(m% + 4 - ~24 p2p 
stu 1 

(AW 

_ m  

[ 
(s -  uW(s + 24) -  ~24) 

stu 1 p 
13 

and 

z = m2 

[ 

24s - 2m2) + st 

su(s - 4m2) 1 G+mQl+mQ2 

+ [s - 
(s - 2m2)2 

c ] P5 + m2 [ (’ ,i,“” ] P3 

+m[ 
(s - u)(m2(s + u) - su) 

stu I p2 +- [ 
(m2(s + u) - su)” 

stu I PI * 

The quantities which appear are 

QI = HYS)I (YS~ - (PI + PI’)>~ , 

Q2 = 8(rdr . (~2 + ~z'))l (~512, 

G = Hrsb * (~2 + ~z'h WY . (~1 +P,')), , 

P2N = GY 'PZ)lU)2 > 

(Al 1) 

and 

p2p = (01 (jr 'Pl)Z 3 
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so that 

P, = P2N -I- Pz’. 

Now G is reduced according to the expression given in the text 

- (~wJI GwJ2 = m2 [ (’ iuu)’ ] PI - m 
[ 

U2s~uSE ] P, 

(s + 4” 
+ [ stu 3 

P, - m2 4 P, [ 1 
U-S + k-1 G- 

G-W 

The remaining case is now 

(y,iy - p2h Cd2 = m [T] P, + [ us - Ty + ‘) ] P2p 

-,a[*] P2N-m[SU-~~-S)] PI (A13) 

The result for the symmetric case is 

(YA WY . zd2 = m [G] P3 + [ Us - Ty - ‘) ] PaN 

-m~[~]P2p-m[su-~-ss)]~~ (A14) 

+m[+-Q2. 
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